

ECE 437: Processor Prototyping Lab

Final Report

Nikitha Suraj, Saandiya KPS Mohan

Section 5

Zhaoyu Jin

May 4, 2025

Overview:

This report presents a comparative performance and resource analysis of five RISC-V processor

architectures developed incrementally throughout the semester which are single-cycle, pipelined

without caches, pipelined with caches, multicore with caches running a single-threaded program,

and multicore with caches running a dual-threaded program. Each design reflects a progressive

architectural enhancement, targeting higher instruction throughput, better memory utilization,

and improved scalability. The goal of this comparison is to examine how architectural

complexity, through pipelining, cache hierarchy, and multithreading impacts key performance

metrics under memory latency constraints. All designs were tested using the mergesort.asm

program, with the dual-threaded version using dual.mergesort.asm, allowing consistent

benchmarking across designs. Memory latency was standardized at 6 for core analysis, with

additional testing across latency values 0, 2, and 10 to evaluate cache effectiveness.

The single-cycle processor, while simple and compact, executes all instruction stages in one

clock cycle, resulting in high latency and limited throughput. The pipelined processor without

caches introduces instruction-level parallelism across five stages, improving throughput but

exposing memory latency bottlenecks. Adding instruction and data caches in the pipelined with

caches version mitigates these memory stalls and improves execution time, especially under

higher RAM latency. The multicore processors build on the cached pipeline design by

duplicating cores and introducing a shared memory bus; the single-threaded variant runs one

instance of the benchmark, while the dual-threaded version runs a parallelized version across two

cores, demonstrating thread-level parallelism and higher speedup. To evaluate performance, we

analyzed synthesis frequency (Fmax), average CPI, average instruction latency, total execution

time, and FPGA resource utilization. Data was collected using the mapped netlist with gate

timing and simulated with our testbench using sweep tables and simulation logs. Additionally,

we calculated speedup from sequential to parallel execution and identified the memory latency at

which caches begin to offer measurable performance benefit. The rest of the report includes

design diagrams, detailed experimental results, performance tables for each memory latency

setting, a final analysis to contextualize results, and contributions of each team member.

Design:

Figure (a): Pipeline Processor with LR/SC

Figure (b): Pipeline Processor with LR/SC – Fetch, Decode, Hazard Unit

Figure (c): Pipeline Processor with LR/SC – Execute, Memory, Writeback, Forwarding Unit

Figure (d): icache RTL and FSM

Figure (e): dcache RTL with LR/SC

Figure (f): dcache FSM without LR/SC

Figure (g): dcache FSM with LR/SC

Figure (h): Bus controller RTL

Figure (i): Bus controller FSM

Figure (j): Multi Core CPU Block Diagram

Results:

Design LAT Fmax

(MHz)

CPUCLK

Average

CPI

Average

Latency (ns)

Total

execution

time (ms)

FPGA Resources

Single

Cycle

6 38.83 5.108 131.542 0.712 Total Logic

Elements: 3,217

Total Registers:

1293

Pipeline

without

caches

6 66.55 7.478 561.84 0.608 Total Logic

Elements: 3,471

Total Registers:

1703

Pipeline

with

caches

6 61.97 2.552 205.906 0.223 Total Logic

Elements: 7390

Total Registers:

4171

Multicore

(Single

Threaded)

6 60.11 2.770 230.38 0.249 Total Logic

Elements: 15427

Total Registers:

8298

Multicore

(Dual

Threaded)

6 63.33 1.957 154.51 0.170

Total Logic

Elements: 15427

Total Registers:

8298

Table (a): Performance data from test program

Design LAT Total Execution time (ms)

Single cycle 0 0.193

2 0.356

6 0.712

10 1.067

Pipeline without caches 0 0.147

2 0.304

6 0.608

10 0.911

Pipeline with caches 0 0.172

2 0.188

6 0.223

10 0.258

Multicore (Single

Threaded)

0 0.196

2 0.213

6 0.249

10 0.285

Multicore (Dual Threaded) 0 0.116

2 0.137

6 0.170

10 0.200

Table (b): Total execution time for each major design

We used mergesort.asm as our test program for single threaded, 5409 instructions and

dual.mergesort.asm for multithreaded, 5429 instructions (core 0 + core 1). The formulas below

were used to calculate the CPI, latency, and total execution time for tables a and b. The

parameters required are the total instructions per program, Fmax, from ‘system.log’ and total

number of cycles executed, recorded from the “make system.sim” command for each LAT value.

The total number of instructions was obtained from running ‘sim -t’ which reports it at the end.

FPGA resources were recorded from the fitter report in ‘system.log’.

𝐶𝑃𝐼  =  
𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑙𝑎𝑡𝑒𝑛𝑐𝑦  =  
𝑡𝑖𝑚𝑒  ⋅  (𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒)

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒  =  (# 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠) ⋅ ;
𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛< ⋅ ;
𝑠𝑒𝑐
𝑐𝑦𝑐𝑙𝑒<

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 	
𝑡𝑜𝑡𝑎𝑙	𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑟𝑒	𝑠𝑖𝑛𝑔𝑙𝑒	𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑
𝑡𝑜𝑡𝑎𝑙	𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑟𝑒	𝑑𝑢𝑎𝑙	𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑 	= 	

0.249
0.170

For the latency calculation in single cycle, the number of stages in the pipeline is 1, as all 5

stages of each instruction complete in one clock cycle (no pipelining involved). For the pipelined

processor, the number of stages is 5. To calculate the total execution time, the cycles/instruction

is effectively the CPI, and the seconds/cycle is the reciprocal of the Fmax value (clock

frequency). The RAM latency at which caches started helping is at LAT = 2. The speedup from

sequential to parallel program is 1.44 times (31.73%) faster.

Conclusion:

The results from the performance evaluations of all 5 processors running mergesort.asm as the

benchmark highlight clear improvements with the modifications added to each progressive

iteration of the processor, starting with the single cycle. Although the single cycle processor

utilized the least FPGA resources, it had the slowest clock speed, and the execution time for

merge sort was the slowest of all the processors. While introducing pipelining increased the CPI

of the processor compared to the single cycle model, the total execution time of merge sort was

decreased significantly. After adding caches to the pipelined processor, while the FPGA

resources nearly doubled, the average CPI decreased from 7.478 to 2.552, and the execution time

decreased by around 63%, from 0.608ms to 0.223ms. This substantial improvement in

performance is due to caching instructions and data; in programs involving a lot of looping and

repeated memory accessing, caching can allow the CPU to do fewer memory accesses, which

decreases the execution time. At higher latencies, when the time spent during memory accesses

are greater, caching becomes very important- the effect of this can be seen in Table b: the

difference between the execution time of pipelined CPU without caching and pipelined with

caches at higher latencies is very significant.

After caches were implemented, the processor was extended to a multicore design. The FPGA

resources greatly increased, but there is no significant change in performance with the single-

threaded merge sort program. However, running a dual threaded merge sort program on the

multicore processor (with latched dcache signals) showed the best performance of all five

implementations of this CPU. The dual-threaded multicore design resulted in the lowest CPI,

latency, and the execution time of dual merge sort, and had the fastest clock speed, despite

utilizing the greatest FPGA resources. The dual-threaded configuration utilizes parallelism so

that there are two cores executing instructions simultaneously, increasing the throughput of

instructions and decreasing overall latency.

Overall, the results of the different CPU designs indicate that pipelining, caching, and parallelism

improves performance. Although the simpler designs were resource-efficient, there was an

apparent bottleneck in performance as the number of instructions and memory operations

increase. As the complexity of the CPU design increased, the FPGA resources increased as well,

but the total execution time got faster. In applications where speed is critical and hardware

resources are not strictly constrained, it is worth utilizing more complex processors at the

expense of greater FPGA resource consumption.

Contributions:

Nikitha Suraj: Modified multicore processor to include LR/SC instructions, wrote dcache

source code, icache testbench, memory control source code

Saandiya KPS Mohan: Wrote palgorithm.asm, wrote icache source code, dcache testbench,

memory control testbench

** all other work (designing the multicore RTL, integration with datapath, etc.) was done

collaboratively in lab.

