ECE 437: Processor Prototyping Lab
Final Report
Nikitha Suraj, Saandiya KPS Mohan
Section 5
Zhaoyu Jin

May 4, 2025

Overview:

This report presents a comparative performance and resource analysis of five RISC-V processor
architectures developed incrementally throughout the semester which are single-cycle, pipelined
without caches, pipelined with caches, multicore with caches running a single-threaded program,
and multicore with caches running a dual-threaded program. Each design reflects a progressive
architectural enhancement, targeting higher instruction throughput, better memory utilization,
and improved scalability. The goal of this comparison is to examine how architectural
complexity, through pipelining, cache hierarchy, and multithreading impacts key performance
metrics under memory latency constraints. All designs were tested using the mergesort.asm
program, with the dual-threaded version using dual.mergesort.asm, allowing consistent
benchmarking across designs. Memory latency was standardized at 6 for core analysis, with

additional testing across latency values 0, 2, and 10 to evaluate cache effectiveness.

The single-cycle processor, while simple and compact, executes all instruction stages in one
clock cycle, resulting in high latency and limited throughput. The pipelined processor without
caches introduces instruction-level parallelism across five stages, improving throughput but
exposing memory latency bottlenecks. Adding instruction and data caches in the pipelined with
caches version mitigates these memory stalls and improves execution time, especially under
higher RAM latency. The multicore processors build on the cached pipeline design by
duplicating cores and introducing a shared memory bus; the single-threaded variant runs one
instance of the benchmark, while the dual-threaded version runs a parallelized version across two
cores, demonstrating thread-level parallelism and higher speedup. To evaluate performance, we
analyzed synthesis frequency (Fmax), average CPI, average instruction latency, total execution
time, and FPGA resource utilization. Data was collected using the mapped netlist with gate
timing and simulated with our testbench using sweep tables and simulation logs. Additionally,
we calculated speedup from sequential to parallel execution and identified the memory latency at
which caches begin to offer measurable performance benefit. The rest of the report includes
design diagrams, detailed experimental results, performance tables for each memory latency

setting, a final analysis to contextualize results, and contributions of each team member.

Design:

Figure (a): Pipeline Processor with LR/SC

Hazard Unit ——
My
wn
cecooe
rerc
= memasd :
SR e R
w
" PCSIc
e nor
o e
emets— 8 h . — -
i
*
s
g
- = T—
2
r
-
P e
S
3 2
"
iCache
rarEN

Figure (b): Pipeline Processor with LR/SC — Fetch, Decode, Hazard Unit

- dCache

ooy

Figure (c): Pipeline Processor with LR/SC — Execute, Memory, Writeback, Forwarding Unit

8 blocks - directmapped (one way)
64 byles
one word per block

| Cache Tag[31:6] I Cache index(5:2] Byte offset(1:0]
4/}‘
%
vad tag Data

2 1/32

data

hit = if valid &4 tag = iaddrtag

hit

Figure (d): icache RTL and FSM

imemadar is valid addr in cache

always reads from cache

IDLE
imemioad = load

it s

IREN =1

lador = imemaddr

Tag[31:6] = laddr.tag

index(5:2) = iaddridx
valid - 1

update table

Cache Tag[31:6] Cache index[5:3] Byte offset[2:0] I
3
26
FRAME 1
Valid tag Data Valid tag Data
Valid addr
10
32
upper 1 bits [2]
26
~dmemload
% 64
= data 64
data
hit = if valid && tag = iaddrtag
f way selection mux v
N\ .
¥ H]
hit >
word selection mux
-
=
¥ g <
data

Figure (e): dcache RTL with LR/SC

oo cache s
s wed fom cache ekt 1. ik rame based o ot ru
N ;! N1 2 tnarow st s0oess
Tagar - uug | | oo s« amamac. 3 E oy o ok
(52 - LRU i e - 46t ovevete
et
1
s courtee
Wi courer

wait
WRITEBACK2 READ_FROM_MEM2
WRITEBACK1 OWEN'=1; dREN =1
FLUSHED ‘await™—> gaddr - dmemaddr; dwal—»
flushed = 1 o
it a:g,mc miss a.T& dirty cowait miss & dirty /
if (rmw) address = 16 cowail
next_state = WB1
dmemioad = 1
dhit = 1
valid - 0
b IDLE —

if (dmemREN) M -> cctrans

Jiread from cache
LR

else
dmemload = 0

-~
Idirly && valid || \valid

if (dmemWEN)
Ifwrite to cache/set dirty
sC

ccwait

SNOOP_CHECK
if snoop_addr = rmw_addr
valid = lccinv

\im o

LR
if datomic
‘daddr = dmemaddr

dirty &8 valid

tdwait

SNOOP_WB1
dirtyladdress] = 1 && address < 8 | GWEN = 1;
datomic && dmemRen it dstore = value

cowait

dstore = value;

Figure (g): dcache FSM with LR/SC

state.

4

___next_state7/—>'

always comb

output logic

————crwait—»
|——————————ccinv—>
—iwait—>
|————————dwait—>»

ﬁiload—)

load—»

X

ramstore-»

ramWEN»
S o
amHEN»

O

Figure (h): Bus controller RTL

ramstate == ACCESS'

CTC1
ramWEN = 1;
ramaddr = daddr{lIrc]
ramstore = dstore[!Irc]
dioad[irc] = dstore[lirc]
{f (ramstate |= ACCESS;
dwait = 1

cctrans

SNOOP_CHECK

ccsnoopaddr~lrc] = RTC1
daddr{irc] cctrans ramREN = 1
dREN(Irc] if (ccwrite) ccinv = 1 dload]irc] = ramload

ccwait = 1 ramaddr = daddrirc]
if (ramstate |= ACCESS)

dwait = 1

amstate == ACCESS

ramstate == ACCES!

ramaddr = daddr[lirc]
ramstore = dstore[llrc]
dload(lrc] = dstore[!Irc]

if (ramstate |= ACCESS)

if (ramstate == ACCESS)

ramREN = 1
dioad[irc] = ramload
ramaddr = daddr{lrc]
if (ramstate |= ACCESS)
dwai
if (ramstate =:
next_Irc = lirc

CTC2
ramWEN =1;

dwait = 1

next_lrc = llrc

RTC2

1
ACCESS)

IFETCH
ramREN = 1
ramaddr = iaddr{lrc]
iload[Irc] = ramload
if (ramstate |= ACCESS)

IDLE
if (AWENlirc] ||
dRENlIrc] || IREN[lIrc]
next_Irc = lirc

WTR1
ramWEN = 1;
ramaddr = daddr{irc]

AWEN(Irc]

iwait = 1 amstate == ACCESS
. ramstore = dstorefirc]
if (ramstate == ACCESS) if (ramstate = ACC{ES]S)
next_Irc = lirc dwait = 1 dwai
if (ramstate

L—vamslal == ACCESS:

amstate == ACCESS-

WTR2
ramWEN = 1;
ramaddr = daddr{lrc]

ramstore = dstorefirc]
if (ramstate |= ACCESS)

next_Irc = lirc

Figure (i): Bus controller FSM

ramstate == ACCESS’

1
ACCESS)

—> Datapath 0 le— datomic > Datapath 1 |)
datomic
- ; a1
imemaddr0 dmemload0 imemaddr1 dmemload1
dmems(orvo dhit0 dmemstorﬂ | dhit1
) dmemaddro dmemRENO _ dmemaddrl dmemREN1
t0 32han0 EN0 | dmemnWENO init1 ham M1 | dmemWEN1
| 32 32 b2 32
4 L 2 v v
B —

Caches 0 Caches 1

daddr0 FRF_NOccnanso iaddr0 [dstore0 | ccinvd daddr1 [dREN1 cctransi|iaddr1 [dstorel | ccinv1

dwaitd dWENOccwriteO| iRENO | gioado|ccwaitd) dwait! dWEN1ccwrite1|iREN1 | gioad1 |cowaitt

ccsnoopaddr0 ccsnoopaddr1

32 32
32

Bus control / Memory Control

|
ramstore | ramWEN

ramaddr | amREN ramload ramstate
| |

RAM

Figure (j): Multi Core CPU Block Diagram

Results:

Design LAT | Fmax Average | Average Total FPGA Resources
(MHz) CPI Latency (ns) | execution
CPUCLK time (ms)

Single 6 38.83 5.108 131.542 0.712 Total Logic

Cycle Elements: 3,217
Total Registers:
1293

Pipeline 6 66.55 7.478 561.84 0.608 Total Logic

without Elements: 3,471

caches Total Registers:
1703

Pipeline 6 61.97 2.552 205.906 0.223 Total Logic

with Elements: 7390

caches Total Registers:
4171

Multicore | 6 60.11 2.770 230.38 0.249 Total Logic

(Single Elements: 15427

Threaded) Total Registers:
8298

Multicore | 6 63.33 1.957 154.51 0.170 Total Logic

(Dual Elements: 15427

Threaded) Total Registers:
8298

Table (a): Performance data from test program

Design LAT Total Execution time (ms)
Single cycle 0 0.193
2 0.356
6 0.712
10 1.067
Pipeline without caches 0 0.147
2 0.304
6 0.608
10 0.911
Pipeline with caches 0 0.172
2 0.188
6 0.223
10 0.258
Multicore (Single 0 0.196
Threaded) 2 0.213
6 0.249
10 0.285
Multicore (Dual Threaded) 0 0.116
2 0.137
6 0.170
10 0.200

Table (b): Total execution time for each major design

We used mergesort.asm as our test program for single threaded, 5409 instructions and
dual.mergesort.asm for multithreaded, 5429 instructions (core 0 + core 1). The formulas below
were used to calculate the CPI, latency, and total execution time for tables a and b. The
parameters required are the total instructions per program, Fmax, from ‘system.log’ and total
number of cycles executed, recorded from the “make system.sim” command for each LAT value.
The total number of instructions was obtained from running ‘sim -t” which reports it at the end.

FPGA resources were recorded from the fitter report in ‘system.log’.

cycles
CPl = ——
instructions

time - (stages inpipeline)

latency = - ;
Y instructions

_])) cycles sec
total execution time = (# of instructions) - (-) . ()
instruction cycle

total execution time multicore single threaded 0.249

Speedup = =
peeaup total execution time multicore dual threaded 0.170

For the latency calculation in single cycle, the number of stages in the pipeline is 1, as all 5
stages of each instruction complete in one clock cycle (no pipelining involved). For the pipelined
processor, the number of stages is 5. To calculate the total execution time, the cycles/instruction
is effectively the CPI, and the seconds/cycle is the reciprocal of the Fmax value (clock
frequency). The RAM latency at which caches started helping is at LAT = 2. The speedup from
sequential to parallel program is 1.44 times (31.73%) faster.

Conclusion:

The results from the performance evaluations of all 5 processors running mergesort.asm as the
benchmark highlight clear improvements with the modifications added to each progressive
iteration of the processor, starting with the single cycle. Although the single cycle processor
utilized the least FPGA resources, it had the slowest clock speed, and the execution time for
merge sort was the slowest of all the processors. While introducing pipelining increased the CPI
of the processor compared to the single cycle model, the total execution time of merge sort was
decreased significantly. After adding caches to the pipelined processor, while the FPGA
resources nearly doubled, the average CPI decreased from 7.478 to 2.552, and the execution time
decreased by around 63%, from 0.608ms to 0.223ms. This substantial improvement in
performance is due to caching instructions and data; in programs involving a lot of looping and
repeated memory accessing, caching can allow the CPU to do fewer memory accesses, which
decreases the execution time. At higher latencies, when the time spent during memory accesses
are greater, caching becomes very important- the effect of this can be seen in Table b: the
difference between the execution time of pipelined CPU without caching and pipelined with

caches at higher latencies is very significant.

After caches were implemented, the processor was extended to a multicore design. The FPGA
resources greatly increased, but there is no significant change in performance with the single-
threaded merge sort program. However, running a dual threaded merge sort program on the
multicore processor (with latched dcache signals) showed the best performance of all five
implementations of this CPU. The dual-threaded multicore design resulted in the lowest CPI,
latency, and the execution time of dual merge sort, and had the fastest clock speed, despite
utilizing the greatest FPGA resources. The dual-threaded configuration utilizes parallelism so
that there are two cores executing instructions simultaneously, increasing the throughput of

instructions and decreasing overall latency.

Overall, the results of the different CPU designs indicate that pipelining, caching, and parallelism
improves performance. Although the simpler designs were resource-efficient, there was an
apparent bottleneck in performance as the number of instructions and memory operations
increase. As the complexity of the CPU design increased, the FPGA resources increased as well,
but the total execution time got faster. In applications where speed is critical and hardware
resources are not strictly constrained, it is worth utilizing more complex processors at the

expense of greater FPGA resource consumption.
Contributions:

Nikitha Suraj: Modified multicore processor to include LR/SC instructions, wrote dcache

source code, icache testbench, memory control source code

Saandiya KPS Mohan: Wrote palgorithm.asm, wrote icache source code, dcache testbench,

memory control testbench

** all other work (designing the multicore RTL, integration with datapath, etc.) was done

collaboratively in lab.

