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Overview: 

This report presents a comparative performance and resource analysis of five RISC-V processor 

architectures developed incrementally throughout the semester which are single-cycle, pipelined 

without caches, pipelined with caches, multicore with caches running a single-threaded program, 

and multicore with caches running a dual-threaded program. Each design reflects a progressive 

architectural enhancement, targeting higher instruction throughput, better memory utilization, 

and improved scalability. The goal of this comparison is to examine how architectural 

complexity, through pipelining, cache hierarchy, and multithreading impacts key performance 

metrics under memory latency constraints. All designs were tested using the mergesort.asm 

program, with the dual-threaded version using dual.mergesort.asm, allowing consistent 

benchmarking across designs. Memory latency was standardized at 6 for core analysis, with 

additional testing across latency values 0, 2, and 10 to evaluate cache effectiveness. 

The single-cycle processor, while simple and compact, executes all instruction stages in one 

clock cycle, resulting in high latency and limited throughput. The pipelined processor without 

caches introduces instruction-level parallelism across five stages, improving throughput but 

exposing memory latency bottlenecks. Adding instruction and data caches in the pipelined with 

caches version mitigates these memory stalls and improves execution time, especially under 

higher RAM latency. The multicore processors build on the cached pipeline design by 

duplicating cores and introducing a shared memory bus; the single-threaded variant runs one 

instance of the benchmark, while the dual-threaded version runs a parallelized version across two 

cores, demonstrating thread-level parallelism and higher speedup. To evaluate performance, we 

analyzed synthesis frequency (Fmax), average CPI, average instruction latency, total execution 

time, and FPGA resource utilization. Data was collected using the mapped netlist with gate 

timing and simulated with our testbench using sweep tables and simulation logs. Additionally, 

we calculated speedup from sequential to parallel execution and identified the memory latency at 

which caches begin to offer measurable performance benefit. The rest of the report includes 

design diagrams, detailed experimental results, performance tables for each memory latency 

setting, a final analysis to contextualize results, and contributions of each team member. 

  



Design:  

 

Figure (a): Pipeline Processor with LR/SC 

 



 

Figure (b): Pipeline Processor with LR/SC – Fetch, Decode, Hazard Unit 



 

Figure (c): Pipeline Processor with LR/SC – Execute, Memory, Writeback, Forwarding Unit 

 

 

Figure (d): icache RTL and FSM 



 

Figure (e): dcache RTL with LR/SC 

 



 

Figure (f): dcache FSM without LR/SC 

 

 

Figure (g): dcache FSM with LR/SC 

 



 

Figure (h): Bus controller RTL 

 

 

Figure (i): Bus controller FSM 



 

Figure (j): Multi Core CPU Block Diagram 

 

  



Results: 

Design LAT Fmax 

(MHz) 

CPUCLK 

Average 

CPI 

Average 

Latency (ns) 

Total 

execution 

time (ms) 

FPGA Resources 

Single 

Cycle 

6 38.83 5.108 131.542 0.712 Total Logic 

Elements: 3,217 

Total Registers: 

1293 

Pipeline 

without 

caches 

6 66.55 7.478 561.84 0.608 Total Logic 

Elements: 3,471 

Total Registers: 

1703 

Pipeline 

with 

caches 

6 61.97 2.552 205.906 0.223 Total Logic 

Elements: 7390 

Total Registers: 

4171 

Multicore 

(Single 

Threaded) 

6 60.11 2.770 230.38 0.249 Total Logic 

Elements: 15427 

Total Registers: 

8298  

Multicore 

(Dual 

Threaded) 

6 63.33 1.957 154.51 0.170 

  

Total Logic 

Elements: 15427 

Total Registers: 

8298 

Table (a): Performance data from test program 

 

 

 

 



Design LAT Total Execution time (ms) 

Single cycle  0 0.193 

2 0.356 

6 0.712 

10 1.067 

Pipeline without caches 0 0.147 

2 0.304 

6 0.608 

10 0.911 

Pipeline with caches 0 0.172 

2 0.188 

6 0.223 

10 0.258 

Multicore (Single 

Threaded) 

0 0.196 

2 0.213 

6 0.249 

10 0.285 

Multicore (Dual Threaded) 0 0.116 

2 0.137 

6 0.170 

10 0.200 

Table (b): Total execution time for each major design 

We used mergesort.asm as our test program for single threaded, 5409 instructions and 

dual.mergesort.asm for multithreaded, 5429 instructions (core 0 + core 1). The formulas below 

were used to calculate the CPI, latency, and total execution time for tables a and b. The 

parameters required are the total instructions per program, Fmax, from ‘system.log’ and total 

number of cycles executed, recorded from the “make system.sim” command for each LAT value. 

The total number of instructions was obtained from running ‘sim -t’ which reports it at the end. 

FPGA resources were recorded from the fitter report in ‘system.log’. 



𝐶𝑃𝐼  =  
𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 

𝑙𝑎𝑡𝑒𝑛𝑐𝑦  =  
𝑡𝑖𝑚𝑒  ⋅  (𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒)

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠  

𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒  =  (# 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠) ⋅ ;
𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛< ⋅ ;
𝑠𝑒𝑐
𝑐𝑦𝑐𝑙𝑒< 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 	
𝑡𝑜𝑡𝑎𝑙	𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑟𝑒	𝑠𝑖𝑛𝑔𝑙𝑒	𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑
𝑡𝑜𝑡𝑎𝑙	𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑟𝑒	𝑑𝑢𝑎𝑙	𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑 	= 	

0.249
0.170 

For the latency calculation in single cycle, the number of stages in the pipeline is 1, as all 5 

stages of each instruction complete in one clock cycle (no pipelining involved). For the pipelined 

processor, the number of stages is 5. To calculate the total execution time, the cycles/instruction 

is effectively the CPI, and the seconds/cycle is the reciprocal of the Fmax value (clock 

frequency). The RAM latency at which caches started helping is at LAT = 2. The speedup from 

sequential to parallel program is 1.44 times (31.73%) faster. 

Conclusion: 

The results from the performance evaluations of all 5 processors running mergesort.asm as the 

benchmark highlight clear improvements with the modifications added to each progressive 

iteration of the processor, starting with the single cycle. Although the single cycle processor 

utilized the least FPGA resources, it had the slowest clock speed, and the execution time for 

merge sort was the slowest of all the processors. While introducing pipelining increased the CPI 

of the processor compared to the single cycle model, the total execution time of merge sort was 

decreased significantly. After adding caches to the pipelined processor, while the FPGA 

resources nearly doubled, the average CPI decreased from 7.478 to 2.552, and the execution time 

decreased by around 63%, from 0.608ms to 0.223ms. This substantial improvement in 

performance is due to caching instructions and data; in programs involving a lot of looping and 

repeated memory accessing, caching can allow the CPU to do fewer memory accesses, which 

decreases the execution time. At higher latencies, when the time spent during memory accesses 

are greater, caching becomes very important- the effect of this can be seen in Table b: the 

difference between the execution time of pipelined CPU without caching and pipelined with 

caches at higher latencies is very significant. 



After caches were implemented, the processor was extended to a multicore design. The FPGA 

resources greatly increased, but there is no significant change in performance with the single-

threaded merge sort program. However, running a dual threaded merge sort program on the 

multicore processor (with latched dcache signals) showed the best performance of all five 

implementations of this CPU. The dual-threaded multicore design resulted in the lowest CPI, 

latency, and the execution time of dual merge sort, and had the fastest clock speed, despite 

utilizing the greatest FPGA resources. The dual-threaded configuration utilizes parallelism so 

that there are two cores executing instructions simultaneously, increasing the throughput of 

instructions and decreasing overall latency. 

Overall, the results of the different CPU designs indicate that pipelining, caching, and parallelism 

improves performance. Although the simpler designs were resource-efficient, there was an 

apparent bottleneck in performance as the number of instructions and memory operations 

increase. As the complexity of the CPU design increased, the FPGA resources increased as well, 

but the total execution time got faster. In applications where speed is critical and hardware 

resources are not strictly constrained, it is worth utilizing more complex processors at the 

expense of greater FPGA resource consumption. 

Contributions: 

Nikitha Suraj: Modified multicore processor to include LR/SC instructions, wrote dcache 

source code, icache testbench, memory control source code 

Saandiya KPS Mohan: Wrote palgorithm.asm, wrote icache source code, dcache testbench, 

memory control testbench 

** all other work (designing the multicore RTL, integration with datapath, etc.) was done 

collaboratively in lab.  

 

 

 

 


