Systolic Array-Based Convolution Acceleration for
AMPO1

Saandiya KPS Mohan*, Akshath Raghav Ravikiran*, Malcolm Lloyd Seibles McClymont™,
Sooraj Chetput Venkataraghavan®, Timothy Francis Hein*
*Elmore Family School of Electrical and Computer Engineering, Purdue University
Email: {mohan76, araviki, mmcclym, schetput, heint} @purdue.edu

Abstract—SoCET (system-on-chip extension technologies), fea-
tures an in-progress Accelerated Matrix Processor (AMP) specif-
ically focused on offloading matrix multiplication tasks from
the CPU. Efficient data management is crucial to optimizing
AMP performance, particularly in convolutional neural networks
(CNNs), where memory bandwidth can become a bottleneck.
Traditional approaches to handling convolution operations, such
as image-to-column transformation (im2col), require large mem-
ory footprints and frequent off-chip memory accesses, leading to
increased latency and power consumption. To address this, we
explore strategies to optimize data reuse and memory locality by
designing a controller that efficiently handles im2col operations,
ensuring continuous data supply to the AMP’s compute units
while minimizing redundant memory operations. Our approach
focuses on structuring data flow and storage mechanisms to
maximize locality and reduce bandwidth consumption, enabling
efficient reuse of overlapping data in convolution operations with-
out unnecessary reloads. This reduces the reliance on expensive
DRAM transactions and improves overall hardware utilization.
We implement this strategy in SystemVerilog, integrating it with
our AMP architecture (systolic array). This work highlights the
importance of optimized memory access patterns in hardware
accelerators, providing a foundation for existing and future
optimizations.

Index Terms—Data Reuse, Al Hardware, Systolic Array,
im2col, Locality

I. INTRODUCTION

Convolution is a fundamental operation used in Artificial
Intelligence (AI), particularly in signal and image processing,
widely adopted in modern deep learning architectures such as
Convolutional Neural Networks (CNNs), Generative Adver-
sarial Networks (GANSs), and encoder-decoder frameworks. It
involves applying a small filter, known as a kernel, across an
input to extract local features such as edges, textures, and pat-
terns. By capturing spatial relationships between neighboring
pixels or data points, convolution enables neural networks to
learn hierarchical feature representations efficiently.

In deep learning, convolutional operations reduce the num-
ber of learnable parameters compared to fully connected lay-
ers, making models more efficient and less prone to overfitting.
CNN s leverage this property to achieve state-of-the-art perfor-
mance in tasks such as image classification, object detection,
and semantic segmentation. Additionally, convolution supports
translation invariance, an essential attribute for robust visual
recognition systems.

To accelerate these operations, dedicated hardware units
such as systolic arrays are often used to perform high-

throughput matrix multiplications. However, the memory ac-
cess patterns involved in convolution pose significant chal-
lenges to hardware efficiency. Standard methods like image-
to-column (im2col) transformations rearrange input data into a
format suitable for general matrix multiplication (GEMM), but
at the cost of increased memory usage and redundant off-chip
memory accesses [1].

These inefficiencies can severely degrade system perfor-
mance and energy efficiency, especially in edge devices where
memory bandwidth and power are limited. Therefore, optimiz-
ing data flow and reuse within hardware accelerators is critical
to improving throughput and reducing latency. This paper
presents a custom controller design tailored for im2col-based
convolution on the Accelerated Matrix Processor (AMPO1).
The proposed approach focuses on minimizing unnecessary
data reloads, maximizing locality, and ensuring continuous
data supply to the systolic array compute units, ultimately
enhancing hardware utilization and inference efficiency.

II. BACKGROUND
A. Convolution Fundamentals

Convolution is a mathematical operation that combines two
functions to produce a third function, expressing how the shape
of one is modified by the other. In the context of deep learning,
a discrete 2D convolution is used to process images and extract
spatial features. The operation involves sliding a small matrix,
called a kernel or filter, over the input data to compute a
weighted sum of the values it covers [1].

Mathematically, the 2D convolution between an input matrix
I and a kernel K of size k x k is defined as:

k-1 k-1

O(i,j) = Y > I(i+m,j+n)-K(m,n)

m=0n=0

where O(i,j) is the output at position (4,5) [10]. This
operation is repeated as the kernel moves (or ’slides’) across
the input, resulting in a feature map that emphasizes specific
patterns, such as edges or textures.

B. Key Parameters of Convolution

Several hyperparameters control how the convolution op-
erates and influence the shape and behavior of the resulting
feature maps:

o Kernel Size: The dimensions of the filter, typically 3 x
3,5 x 5, etc. Larger kernels can capture broader features
but increase computation.

« Stride: The number of pixels that the kernel shifts across
the input after each operation. A stride of 1 produces
high-resolution output, whereas higher strides down-
sample the feature map.

o Padding: Adds extra border pixels (often zeros) around
the input to control the output size. ’Same’ padding keeps
the output dimensions close to the input, while ’valid’
padding reduces them.

« Dilation: Introduces gaps between kernel elements, allow-
ing the kernel to capture a wider field of view without
increasing its size.

« Input channels: For multi-channel inputs (e.g., RGB im-
ages), each kernel has weights for each channel, and the
output is the sum of convolutions over all channels.

o Number of Filters: Each convolutional layer can apply
multiple filters, producing a corresponding number of
output channels (or feature maps).

These parameters control both the computational complexity

and the representational capacity of the convolutional layers
in neural networks.

C. Existing methods

1) im2col (Image-to-Column)
The im2col method restructures a multidimensional in-
put feature map into a 2D matrix, where each column
corresponds to a flattened patch (receptive field) of
the input that the kernel slides over. This allows the
convolution operation to be expressed as a standard
matrix multiplication between the im2col matrix and a
reshaped kernel matrix. [1]
Although this enables efficient execution using BLAS-
like libraries, it introduces several drawbacks:

o Excessive Memory Usage: Overlapping receptive
fields lead to significant data duplication. For small
strides or large inputs, the im2col matrix can be
orders of magnitude larger than the original input.

« Bandwidth Overhead: The large intermediate matrix
often exceeds on-chip memory, requiring frequent
access to off-chip DRAM.

e Loss of Data Locality: Once flattened, the pixels
are in non-adjacent memory addresses, which un-
dermines temporal and spatial reuse in hardware
pipelines.

2) im2row (Image-to-Row)
Similarly, the im2row technique flattens patches into
rows instead of columns. It is commonly used in CPU-
optimized libraries and may offer better cache alignment
in certain architectures. However, the fundamental draw-
backs remain the same—data redundancy, large memory
footprint, and lack of alignment with hardware-specific
dataflows. [1]

3) Winograd Convolution
Winograd’s minimal filtering algorithm is an optimiza-

tion technique that reduces the number of multiplications
required in small convolutional kernels, particularly for
3 x 3 filters [2]. Instead of directly performing the con-
volution in the spatial domain, the Winograd algorithm
transforms both the input tile and the kernel into another
domain where element-wise multiplication is performed.
After the multiplications, the result is transformed back
to the spatial domain [7].

For example, in the commonly used F'(2 x 2,3 x 3)
Winograd configuration, a 4 x 4 input tile and a 3 X
3 kernel produce a 2 x 2 output tile. The computation
follows this structure:

Y = AT [(GgG") ® (BTdB™)] A

Where:

e g is the 3 x 3 kernel

e dis the 4 x 4 input tile

e G, B, and A are transform matrices specific to the
Winograd configuration

e © denotes element-wise (Hadamard) multiplication

This transformation significantly reduces the number of
multiplications (from 9 to 4 in the F(2 x 2,3 x 3)
case), improving arithmetic intensity [8]. However, it
introduces additional additions, and the fixed transform
matrices must be carefully managed [5].

III. CONSTRAINTS

Designing a hardware-efficient convolution engine for the
Accelerated Matrix Processor (AMP0O1) comes with a unique
set of constraints, both architectural and functional. While
convolution operations can be mapped to matrix multiplication
through software transformations like im2col or im2row, these
approaches are fundamentally mismatched with the AMP’s
design philosophy and existing infrastructure.

A. Incompatibility of im2col/im2row with AMP

The im2col and im2row methods restructure input feature
maps into flattened matrices to facilitate general matrix multi-
plication. However, AMP is built around a systolic array archi-
tecture, optimized for tightly controlled, streaming dataflows
and minimal memory redundancy [3]. Integrating im2col or
im2row into AMP introduces several critical problems:

o Data Duplication: im2col inherently duplicates overlap-
ping regions of the input, inflating memory requirements.
AMP’s limited on-chip buffer cannot support this over-
head.

o Non-Streaming Data Access: These transformations re-
quire loading large flattened matrices into memory before
computation. This clashes with AMP’s expectation of
continuous, small-batch data streaming into the systolic
array.

e Loss of Locality: Flattened data discards spatial rela-
tionships that are essential for buffer reuse and efficient
pipeline operation within AMP.

o Control Complexity: Supporting im2col would require
complex control logic for data unpacking and reshaping,
increasing the latency and hardware footprint, undermin-
ing the lightweight, low-latency design goals of AMP.

B. Hardware and Architectural Constraints

In addition to incompatibility with im2col-style dataflows,
this project is also constrained by the existing design and
capabilities of the AMPOO:

o Pre-Defined Systolic Array: The AMP already includes a
fixed systolic array optimized for matrix multiplications.
Modifying or redesigning this array is outside the project
scope, which means all new memory management strate-
gies must interface with the current hardware as-is.

o Fixed Compute Unit Scheduling: The flow of operands
through the array is predetermined, so input buffers must
align with these patterns without stalling the compute
pipeline.

o Limited On-Chip Memory: AMP’s buffer space is finite,
and any data reuse strategy must be carefully optimized
to fit within strict resource budgets. This requires efficient
tiling and overlap-aware reuse mechanisms.

o Latency and Throughput Goals: The system must support
real-time or near-real-time inference workloads. This
prohibits designs that introduce significant pre-processing
overheads, like full im2col transformations.

Given these constraints, the challenge is to develop a
lightweight, high-reuse convolution controller design that can
efficiently feed overlapping windows of convolutional data
directly into the systolic array without transformation, dupli-
cation, or external storage dependency. The next section intro-
duces such a buffer architecture tailored for this environment.

C. Systolic Array Overview

The systolic array is a highly parallel hardware architecture
designed for efficient implementation of dense linear algebra
operations, particularly matrix multiplication. It consists of
a grid of Processing Elements (PEs) that perform simple
arithmetic operations (typically multiply-accumulate, or MAC)
in a pipelined and synchronized fashion. Each PE passes data
to its neighboring PEs in a fixed pattern, creating a rhythmic,
wave-like flow of data through the array.

In the systolic array used in Accelerated Matrix Processor
(AMPO0O0), PEs are arranged in a two-dimensional grid. Input
data flows through the array in two directions, which are
rows, one operand matrix (typically the input activation or
intermediate feature tile) is fed row-by-row across the array
and columns, the other operand matrix (typically the weight
matrix or kernel tile) is streamed down the columns.

Each PE receives an element from the row input and an
element from the column input, performs a multiplication,
adds the result to a running partial sum, and then passes the
inputs to the next PE along its row and column. This results in
each PE contributing to the computation of a single element
in the output matrix [10].

INPUT DATA
’E EI ’E @ WEIGHTS
VALUES

control_unit

Fully saturated pipeline negdmhe Tfollowing

4 weights:64 bits

it is important to note that these are needed each MAC cycle and
4 partials: 64 bits i ti

may include from different

Fig. 1. Systolic array block diagram.

The systolic array’s key advantage lies in its predictable and
regular data movement, which reduces control complexity and
enables high throughput. It also minimizes off-chip memory
accesses by reusing data within the array as it flows through.

In the AMP, the systolic array is designed to handle general
matrix multiplications (GEMM), which are a core component
of many machine learning workloads. The grid size is 4 x 4,
and its performance is highly dependent on receiving a steady
stream of data from both operands. This streaming model
allows the AMP to achieve high utilization of its compute
units, provided the data is prepared and delivered in an efficient
manner [10].

However, while the systolic array excels at matrix multi-
plication, it does not directly support convolution operations,
which involve sliding window patterns, data reuse, and non-
uniform access patterns. To bridge this gap without modifying
the systolic array itself, external logic is required to orchestrate
data movement in a way that maps convolutions into compat-
ible matrix multiplications. This is the responsibility of the
convolution controller discussed in the next section.

IV. DESIGN CHOICES JUSTIFICATION

Throughout the design process, we evaluated multiple con-
volution strategies to determine the most hardware-efficient
and compatible method for our AMP. Initially, Winograd con-
volution appeared to be a promising candidate due to its ability
to reduce the number of multiplications required for small
convolutions [2]. However, after deeper research and attempts
to map Winograd onto hardware, we encountered significant
challenges. The algorithm requires multiple transformation
matrices that vary with kernel and tile size, and these matrices
must be applied to both the input data and the kernel before
and after element-wise multiplication. Generating or storing

these matrices on-chip would consume considerable logic and
memory resources. Moreover, integrating the necessary pre
and post-processing steps introduced irregular data access pat-
terns that conflicted with the regular, streaming nature of our
AMP’s systolic array. These observations led us to conclude
that while Winograd is mathematically efficient, its control
complexity and dataflow misalignment make it unsuitable for
our constrained hardware architecture.

In parallel, we explored data restructuring techniques like
im2row and im2col, both of which convert convolution into
matrix multiplication by reshaping the input image into a
series of overlapping patches [4]. After testing both layouts,
we found that im2col was a better fit for our AMP. The
im2col method flattens each receptive field (e.g., 3 x 3 patch)
into a column vector, which aligns cleanly with the way our
systolic array consumes input matrices—row-by-row for one
operand and column-by-column for the other. In contrast,
im2row flattens patches into row vectors, which would require
transposing data before feeding it into the systolic array,
complicating the controller and reducing throughput.

Other than that, we also experimented with a buffer-based
design. This method involved holding patches of the input
matrix in four separate buffers, each preloaded with values
corresponding to a region of the input [4]. The controller
would then read from these buffers and map the values to
the correct inputs of the systolic array. While this approach
worked in simulation, it introduced significant hardware over-
head due to the need to manage multiple read/write pointers,
and handle boundary conditions. The buffers also added un-
necessary storage redundancy, as many values were reused
across multiple tiles due to convolution’s overlapping nature.
After further architectural exploration, we discovered that by
carefully structuring data access patterns and managing the
systolic array input FIFOs intelligently, we could eliminate
the need for preloaded buffers entirely. The scratchpad was
redesigned to provide burst access to k x k tiles directly, and
the controller was modified to push those values in real time
into the appropriate FIFOs. This realization dramatically sim-
plified our design and reduced both logic and memory resource
usage, while maintaining performance. It also reinforced our
emphasis on dataflow-aware design, where efficient movement
and reuse of data took priority over brute-force buffering.

Through this process, we learned that algorithm-hardware
alignment is just as critical as algorithmic efficiency. The ele-
gance of Winograd did not translate into practical performance
gains due to architectural mismatches. On the other hand,
im2col offered a more straightforward and scalable solution
that required minimal adaptation of our existing AMP. This
realization ultimately shaped the direction of our convolution
controller design.

V. FINAL DESIGNS

Considering the architectural constraints and trade-offs
discussed in earlier sections, we developed a convolution
controller integrated into the AMPO1 system. The design
consists of four core components: a modified systolic array

optimized for column-wise data flow, a scratchpad memory
system redesigned for banked SRAM access, a custom con-
volution controller responsible for data sequencing, and the
AMPOLI top-level integration which orchestrates the interaction
between all components. These combined components work
together to efficiently execute convolution operations using
im2col while maximizing hardware reuse from our original
matrix multiplication design.

A. AMPOI

AMPOL1 is the top-level integration of our Accelerated Ma-
trix Processor (AMP). It brings together the compute, memory,
and control subsystems needed to perform matrix operations
independently of the core CPU. AMPO1 consists of the systolic
array, scratchpad memory, convolution controller, and inter-
faces to off-chip memory. Within this layout, the convolution
controller sits between the CPU-side command input and the
scratchpad, issuing instructions to control memory access. The
scratchpad feeds processed data to the systolic array, which
performs matrix multiplications on im2col-reformatted data.
The partial sum register collects and filters outputs, selectively
storing only meaningful results. AMPO1 is modular, allowing
future extensions such as ReLU activations, pooling, or batch
normalization modules to be inserted between the compute
and memory stages. This modularity ensures flexibility without
compromising the lightweight footprint of the design.

Scheduler Core

Fetch Issue Func(jonal Systolic Array
Queue Units
Memory l I
GEMM CONV
Controller Controller
1$ D$ Scratchpad 2.0 I m—

Compute Accelerator

] i]

Memory controller

Main Memory

Fig. 2. Top Level RTL of AMPO1.

B. Systolic Array

Our AMPOI includes a 32x32 systolic array composed
of FP16 multiply-accumulate (MAC) units arranged in a
regular grid. The original design supported row-wise data
streaming, where rows of an input matrix would be pushed
across the horizontal direction and the corresponding kernel

weights are stationary where outputs then flow vertically. This
format is ideal for general matrix multiplication but conflicts
with im2col’s layout, where input patches are flattened into
columns.

To resolve this mismatch, we reoriented the dataflow in the
systolic array to support column-by-column loading. Accord-
ing to systolic array in Figure 3, flattened k x k convolu-
tion tiles from the input feature map (prepared via im2col)
are streamed vertically into the array. This reconfiguration
required changes to the input FIFO management, ensuring the
correct ordering and alignment of data along the vertical axis.
Each MAC unit receives input from the FIFO above and a
delayed weight from its left neighbor, maintaining the original
systolic processing pattern.

The array remains fully pipelined, with no changes to the
core computation, allowing us to reuse the optimized design.
This approach preserves throughput while aligning with the
new memory and controller interfaces.

C. Scratchpad

The original AMPOO prototype used a register-based
scratchpad, suitable for manually managed data movement but
inefficient for dynamic convolution operations. We redesigned
the scratchpad as a linearly addressed, banked SRAM system
with 32 independent memory banks. Each bank stores a
segment of the input image, weights, or partial sums. To allow
parallel access to multiple FP16 values from a tile, we imple-
mented swizzling, a data-layout transformation that ensures
adjacent rows or columns are distributed across different banks
to avoid access conflicts.

This scratchpad architecture allows the convolution con-
troller to perform high-speed burst reads of im2col tiles from
memory. When a k x k tile needs to be loaded, the controller
specifies the base address, and the scratchpad returns all k2
values in a single operation. This supports both horizontal and
vertical data access patterns, essential for extracting patches
during stride-based movement. The scratchpad also differen-
tiates between GEMM and convolution operations using a
GEMM controller and convolution controller in the compute
accelerator.

The memory interface is synchronized with the controller
FSM and supports backpressure and flow control signals, en-
suring data integrity. This redesign, implemented by Akshath,
ensures the system scales with larger feature maps and kernel
sizes while keeping on-chip memory access latency low.

D. Convolution Controller

The convolution controller is the key innovation in our
system. It is responsible for converting high-level convolution
instructions (e.g., kernel size, stride, padding, and input di-
mensions) into precise, low-level memory access patterns and
dataflow control signals for the scratchpad and systolic array.

At the heart of the controller is a finite state machine (FSM)
that iterates through the input image using nested loops over
rows and columns. For each position, it computes the base

Execute

SCRATCHPAD

nnnnnnnn

DRAM CONTROLLER

Fig. 3. Scratchpad block diagram.

Systolic Array FIFOs

[15:0]
16

[31:16]
16

[#7:32)
16

3:48]
%

b4

value:

e |___enable
Stride—1 CONV controller]
_Kemel i,j index always comb S
size | 782 o

Scratchpad 2.0

Fig. 4. Convolution controller block diagram.

address of the corresponding k x k tile in the scratchpad using
the formula:

Address(i, j) = Base + ¢ x RowStride + j

where 1,7 denote the tile’s top-left corner, and strides
depend on the user-specified stride parameter. The controller
sequentially instructs the scratchpad to read from these loca-
tions and flatten the result into a vector (column).

Once the tile is received, the controller distributes the FP16
values to the appropriate input FIFOs of the systolic array. The
mapping logic ensures spatial alignment between the data and

compute units. For a 3 x 3 kernel, this involves broadcasting
9 values across columns such that each column of the systolic
array receives one value per cycle for 9 cycles.

For example, for a 4 x 4 kernel, stride = 1, and a 6 X
6 input matrix, the weights will be loaded in order in the
PEs of systolic array. As for the inputs, refer to the Table 1.
The values highlighted in yellow represent the first input tile
extracted from the 4 x 4 convolution kernel, corresponding to
the initial convolution window over the input feature map.

Example of 6 X 6 input matrix:

apo Gp1r @p2 ap3 aop4a aos

a1p a1 a2 @13 ai4g ais

G20 @21 A22 G23 A24 Q25

azp @31 azz G33 A34 azs

g0 G41 QA42 A43 A44 Q45

aso as1 G322 As53 G54 455

TABLE 1
EXAMPLE OF INPUT DATA ARRANGEMENT IN SYSTOLIC ARRAY

a2l all a0l a30 a20 al0 a00
al2 a02 a3l a2l all a0l 0
a03 a32 a22 al2 a02 0 0
a33 | a23 | al3 | a03 0 0 0
— To systolic array.

Importantly, the systolic array computes independently of
the FSM. Once loaded, it produces a matrix output corre-
sponding to one or more output channels. The controller uses
masking logic to filter invalid partial sums, particularly near
the image edges or padded regions. Only valid outputs are
collected in the partial sum register, reducing post-processing
overhead.

The FSM is parameterized to handle various kernel sizes
and strides, allowing the controller to generalize across CNN
layers. The modular structure of this controller enables easy
testing, reconfiguration, and potential extensions to support
features like dilated convolution or grouped convolution in
future designs.

INPUT_SIZE - KERNEL + 1

TOP
i = pateh_num *
stride
J =] +stride:
count=0
patch_num++

signal from
scheduler

INNER
req = (i + count,)
counts+

START
enable = 1

count == KEANEL - 1

Fig. 5. Convolution controller FSM.

To validate the correctness and performance of our design
before RTL implementation, we developed a full Python sim-
ulator that models the behavior of the convolution controller,
and the systolic array. This simulator helped us test various
convolution parameters, detect edge cases (like stride-induced
overlap), and confirm the correct mapping of partial sums to
output features. It also enabled cycle-accurate visualization

of data movement, helping debug timing and synchronization
issues before moving to SystemVerilog. The simulator proved
essential in refining our control logic and gave us high
confidence that the hardware design would behave as expected
under real-world CNN workloads.

VI. ADVANTAGES OF CONVOLUTION CONTROLLER

The convolution controller architecture designed for AMPO1
offers several hardware-level benefits over traditional software-
based or buffer-heavy implementations:

¢ Reduced Memory Footprint: By avoiding intermediate
buffer storage and reusing overlapping input data directly
from the scratchpad, our approach minimizes the memory
required for convolution operations. This leads to a leaner
hardware design that better fits within constrained on-chip
resources.

o Fewer DRAM Accesses: Conventional software-based
im2col methods often involve repeated DRAM reads for
overlapping input regions. Our controller ensures that
input values are fetched once from off-chip memory
and then reused efficiently through the scratchpad and
systolic array, greatly reducing expensive and power-
hungry DRAM transactions.

o Optimized Data Reuse: The integration of swizzling in
the scratchpad and precise data routing by the convolution
controller enables high data locality, further enhancing
performance by avoiding duplicated data movements.

Overall, these advantages contribute to lower power con-
sumption, faster convolution execution, and better utilization
of the AMPO1 hardware.

FUTURE PLANS

The next steps for this project involve the full hardware re-
alization and integration of the proposed design. First, we will
implement the convolution controller’s finite state machine
(FSM) and supporting logic in SystemVerilog, along with a
comprehensive testbench to verify its correctness, timing, and
dataflow behavior under various convolution configurations.

After successful standalone validation, we plan to integrate
the convolution controller with other subsystems of AMPOI,
including the modified scratchpad memory and column-wise
systolic array. This will involve ensuring proper handshake
protocols, synchronization, and performance tuning across the
AMP pipeline.

These efforts aim to move the convolution controller from
conceptual simulation into a functional, verified RTL module,
paving the way for real-world convolution acceleration on
AMPO1.

CONCLUSION

In this project, we developed a convolution controller in-
tegrated into Accelerated Matrix Processor (AMPO1) to effi-
ciently handle convolutional workloads on hardware. Starting
from an evaluation of multiple convolution strategies including
Winograd, buffer-based methods, and im2row, we identified
im2col as the most compatible approach given the constraints

of our existing architecture. Our design strategically avoids
unnecessary buffers and instead optimizes data routing and
reuse by working in tandem with a modified systolic array
and scratchpad memory.

Through this process, we gained a deeper understanding of
the trade-offs between mathematical efficiency and hardware
feasibility, particularly with the complexity of implementing
Winograd transformations on constrained compute units. The
decision to switch from a row-based to a column-based
systolic array, coupled with a redesigned scratchpad using
swizzling, allowed us to fully utilize the existing matrix
multiplication infrastructure in a resource-efficient way.

The convolution controller FSM, validated through a com-
prehensive Python simulator, successfully manages data move-
ment, ensures synchronization across hardware components,
and maintains low memory overhead while delivering accurate
output activations. This work underscores the importance of
data locality, reuse, and hardware-software co-design in build-
ing efficient CNN accelerators. Our architecture now provides
a solid foundation for future expansions, including support for
varying kernel sizes, dynamic stride handling, and pipelined
multi-layer inference.

ACKNOWLEDGMENT

The authors would like to thank the System-on-Chip Ex-
tension Technologies (SoCET) group, part of the Vertically
Integrated Projects (VIP) program at Purdue University, for
providing the hardware platform, development environment,
and technical mentorship that enabled this work. We are
especially grateful to Dr. Anand Raghunathan and Dr. Mark
Johnson for their expert guidance, encouragement, and in-
valuable insights throughout the project. Their support was
instrumental in the design and integration of the convolution
controller into the AMPOI processor.

REFERENCES

[1] B. QoChuk, “im2col Convolution,” OpenGenus IQ: Learn Algorithms,
DL, System Design, 2025. https://iq.opengenus.org/im2col/

[2] R. Andri, B. Bussolino, A. Cipolletta, L. Cavigelli, and Z. Wang,
“Going Further With Winograd Convolutions: Tap-Wise Quantization
for Efficient Inference on 4x4 Tile,” arXiv.org. https://doi.org/10.48550/
arXiv.2209.12982

[3] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” arXiv.org. https://doi.org/10.48550/arXiv.1704.04760

[4] P. Wang et al., “An Efficient im2row-Based Fast Convolution Algo-
rithm for ARM Cortex-M MCUs,” IEEE Access, vol. 9, no. 1, pp.
124384124395, 2021, doi: 10.1109/access.2021.3110827.

[5] D. Xie, Z. Jia, Z. Zhang, and X. Jin, “Optimizing half precision
Winograd convolution on ARM many-core processors,” in Proceedings
of the 13th ACM SIGOPS Asia-Pacific Workshop on Systems, New
York, NY, USA: ACM, Aug. 2022, pp. 53-60. https://doi.org/10.1145/
3546591.3547529

[6] H. Genc et al., “Gemmini: Enabling Systematic Deep-Learning Archi-
tecture Evaluation via Full-Stack Integration,” arXiv.org. https://arxiv.
org/abs/1911.09925

[71 X. Liu, J. Pool, S. Han, and W. J. Dally, “Efficient Sparse-Winograd
Convolutional Neural Networks,” arXiv.org. https://arxiv.org/abs/1802.
06367

[8] A. Lavin and S. Gray, “Fast Algorithms for Convolutional Neural
Networks,” arXiv.org. https://arxiv.org/abs/1509.09308

[91 H Logix & Solutions, “A Simple 2D Convolution Using Systolic
Arrays.” Sep. 15, 2020. Accessed: May 01, 2025. https://youtu.be/
WYw9guurOLo?si=HMWOybgXEBVAgWRH

[10] T. Raja, “Systolic Array Data Flows for Efficient Matrix Multiplication
in Deep Neural Networks,” arXiv.org. https://doi.org/10.48550/arXiv.
2410.22595

